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The focusing of a weak and nearly plane shock wave a t  an axisymmetric arbte is 
examined. The initial-value problem governing the flow in the focal region is derived. 
Asimilitude is introduced which shows that the details of the flow depend on the initial 
shape and strength of the shock only through a simple rescaling of the variables. The 
dependence of the pressure coefficient on the physical parameters is given. It is seen 
that the maximum pressure coefficient is proportional to a parameter measuring the 
rate of focusing of the shock and to the square root of a parameter measuring the initial 
strength of the shock. 

1. Introduction 
I n  recent years there has been considerable interest in focusing shock waves. In  his 

theory of shock dynamics, Whitham (1957,1959) has described the behaviour of shock 
waves of moderate strength. An important experimental study of these phenomena is 
due to Sturtevant & Kulkarny (1976). I n  this study the focusing of a wide variety of 
shock waves at point foci, caustic surfaces and ar6tes was delineated. The focusing of 
weak shock waves a t  smooth caustics has been described analytically by Guiraud 
(1965), Hayes (1968) and Pechuzal & Kevorkian (1977). Cramer & Seebass (1978) 
have examined the focusing of weak shock waves a t  a two-dimensional arcte. Cramer 
(1980) has shown that this two-dimensional theory can also describe the focusing pro- 
cess at a three-dimensional arbte, provided the two principal radii of curvature of 
the shock surface are not identical. 

In  this paper, we describe the focusing of a weak shock a t  an axisymmetric arete. 
Because of the three-dimensional symmetry of the problem, the resultant amplifica- 
tions are expected to be much greater than those encountered a t  a two or three- 
dimensional arbte. The only exceptions to this are the point focus and certain singular 
cases of the present theory. The general procedure of Cramer & Seebass (1978) is 
used to derive the initial-value problem governing the flow in the vicinity of the argte. 
A similitude is obtained which shows that the details of the focusing problem are 
independent of the physical parameters of the problem; this also allows us to  relate 
the pressure coefficient directly to  the initial strength and geometry of the shock. 
I n  order to savespace, the next section simply outlines the derivation of the key results 
and emphasizes the differences between these and the two-dimensional theory. 
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FIGURE 1. (a )  Co-ordinate system. z = r cos 0, y = r sin 0. ( b )  Behaviour of a typical shock surface 
in a 0 = constant plane. The second caustic surface degenerates to the line r = 0, x 3 R,. 

2. Outline of solution 
It will be useful to refer to the Cartesian and cylindrical co-ordinate systems depicted 

in figure 1 (a) .  The direction of propagation is parallel to the positive z axis. At t = 0, 
the equation of the shock surface is given by 

x =f(y,x) = F(r ) ,  
where r = (y2+z2)&; the focusing of a typicaI shock surface is indicated in figure 1 (b ) .  
As in the two-dimensional theory, it will be assumed that the shock surface is approxi- 
mately plane. The quantity S _= L/R, will therefore be taken to be small. Here L is 
defined by F”(L) = 0 and R, = [F”(O)]-l is the value of either of the principal radii of 
curvature a t  y = 0 and x = 0. In  the usual way, F”(r) = dzP(r)/drz. We will also need 
to require that 

be finite and non-zero; here Fiv(r) = d4F/dr4. The strength of the shock will be taken 
to be small; we will therefore require that 

K - R, L2Fiv(0) > 0 

€ s cJ0-, 0, 0 , O )  
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be small. Here cp 3 c,(x, y, z ,  t )  is the pressure coefficient. For the pressure levels and 
gradients encountered here, the flow may be regarded as irrotational; the equations of 
motion may therefore be recast in terms of a velocity potential, 4 = # ( x ,  y ,  z ,  t ) .  The 
fluid will be taken to be an ideal gas; the equations of motion may therefore be written 

4tt + 2$x $xt + 2$l/ @!It + 2#2 $ 2 t  + 2$z $v @xv + 2$x $2 A 2  + 2$l/ $2 $v2 

= (a2 - $3 4 x x  + (a2 - 4;) $l/l/ + (a2 - 42 $,,, ( 1 )  

where the sound speed, a, is given by the Bernoulli equation 

a2 = a; - (Y - 1 1 [$t + 4(& + 4; + 431 9 
where a, is the sound speed of the undisturbed medium and y is the ratio of specific 
heats. The initial conditions for ( 1 )  will be 

#(x, Y, 290) = 4,cx, Y, 4, 4tt(x, Y ,  z,O) = #I@, Y ,  4. (2) 

The gas ahead of the shock is assumed to be uniform and a t  rest. Therefore, 4, and 
are taken to be zero ahead of the shock, i.e. for x > f ( y , z )  = F ( r ) .  Behind the shock, 
they must be consistent with the usual shock jump conditions and the assumption of 
symmetry about the x axis. 

For times t = O(L/a,) and e = o(S2), it may be shown that (1)  may be linearized to  
yield the three-dimensional wave equation. As in the two-dimensional theory, the 
solution which satisfies the initial conditions ( 2 )  is given by the Poisson integral 
formula. The linear theory may be used to calculate the caustic surfaces associated 
with the initial shock surface. It is well known that there are generally two distinct 
caustic surfaces corresponding to any smooth surface, see e.g. Friedlander (1958). It is 
interesting to note that, in this axisymmetric problem, one of the caustic sheets de- 
generates into a line along the x axis, i.e. y = 0,  z = 0, x 2 R,. The other caustic sheet 
is simply the axisgmmetric version of the caustic surface described by Cramer & 
Seebass (1978) .  It may be shown that the first caustic, i.e. the line caustic, corresponds 
to the intersection of rays originating a t  the same value of r on the initial shock surface 
but different values of 8 and the second sheet corresponds to the intersection of rays 
originating in a constant 8 plane but a t  different values of r .  

The linear theory, of course, fails a t  the caustic surfaces. When the shock first touches 
the caustic, i.e. when t = R,/a,, the pressure coeEcient is proportional to I R,, - X I  4 
along the axis of symmetry and r-3 in the x = R, plane. These singularities are seen to 
be much stronger than those corresponding to the two-dimensional arbte or smooth 
caustic. At the arbte, as well as the smooth portions of the caustic, nonlinear effects pre- 
dominate and we need to find a second approximation to  (1)  which is valid in the 
vicinity of the arbte, i.e. x =: R,, y 0. The initial condition or incoming signal 
is obtained by matching this inner solution to the linear or outer solution. When the 
procedure of Cramer & Seebass (1978)  is applied to the present problem, we find that 
the flow near the ar6te is governed by the initial-value problem 

0,  z 

9 F L M  I10 
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and 

where P = (g2 + 2 ) 4 .  The limits qu and q1 are the two real roots of 

or, equivalent 1 y , 

As in the two- and three-dimensional cases, the incoming solution is self-similar in 
time, although of a different form. As one would expect, the incoming solution depends 
on 2 and Q only through 8 ;  we will therefore assume $ = $(x, t”, 8 )  only and replace the 
$fit + 6;; term appearing in (3) by $9; + P-l&. The dimensional quantities are related 
to  the scaled variables 6, x, P ,  t” by 

- (42-t 1) + (1 + C +  rq)a = o 

q 4 + 2 q 2 - r q - C  = 0. 

R 

a, 
4 = AV3La,$, r =AQLB, t = d ( l + A t ” ) ,  x-a,t = A W x ,  

where A = ( e / S 2 ) f  = o( 1). 

CD as follows : 
We now obtain the similitude for this problem by defining new variables p, 7 ,  p and 

X = (yf 1 )  5, f =  ( y+  1 ) a K b ,  9 = (yf l ) % K $ p ,  $ = 

I n  terms of these variables, the initial-value problem becomes 

1 

P 
mD,, + @, CDg + app + - Qp = 0 

with ( D N  - 7 G ( ~ , r ’ )  as 7- t - -00 .  

I n  terms of these variables 

(4) 

thus, there is no similarity parameter and (D = CD( 5,7,  p)  only. Except for a rescaling 
of the dependent and independent variables, the details of the focusing process are the 
same for all axisymmetric shock surfaces. An analogous similitude has been given by 
Cramer (1980) for two- and three-dimensional problems. The pressure coefficient 
cp M 24,/a,, where X = x-ao t ,  may now be written 

Thus, the dependence of the pressure coefficient on the physical parameters is given 
explicitly. 

The maximum pressure coefficient is therefore seen to be proportional to  d6.  If we 
compare this to a two-dimensional shock having the same E and 6 we see that the 
pressure levels obtained here are a factor of (e /S2)8 larger than those in a locally two- 
dimensional problem. A similar analysis can be made of the size of the focal region, i.e. 
the region in which nonlinear effects predominate. It is easily seen that the axi- 
symmetric focusing yields a much larger focal region than that of the two-dimensional 
theory; this is apparently due to the rapid amplification of the axisymmetric problem. 
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3. Conclusion 
The procedure of Cramer & Seebass (1978) has been used to derive the initial-value 

problem and similitude governing the flow in the vicinity of an axisymmetric arkte. 
The pressure coefficient was found to be proportional to €48, where 6 measures the initial 
strength of the shock and S measures the rate of focusing. The details of the flow are 
given by (4); these are essentially independent of the physical parameters of the prob- 
lem. As in the two-and three-dimensional problems, these results are only valid if 
e = o ( P )  and8 = o(1). 

This research was supported by the National Science Foundation through grant 
ENG79-11888. 
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